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Abstract. The use of Automatic Differentiation for Time Series Analysis is con-
sidered. Especially we discuss the exact ML-estimation for linear regression models
with stationary ARMA(p,q) residuals. The gradient and the Hessian matrix of the
likelihood function, which has to be minimized, can be computed at fixed but ar-
bitrary chosen points by Automatic Differentiation. The stationarity region for the
ARMA (p,q) residuals is represented as a system of nonlinear inequalities. The spe-
cial behavior of the likelihood function allows to use well-known methods for solving
unconstrained nonlinear programming problems.
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1. INTRODUCTION

One of the main problems in Time Series Analysis is the calculation of
maximume-likelihood estimators. Especially concerning linear regression models
with stationary ARMA(p,q) residuals, many investigations can be found in the lit-
erature, see e.g. Harvey and Phillips (1979) and the references cited there. The
maximum-likelihood estimator can be characterized as the solution of some op-
timizaticn problem. And to treat such a problem, gradient vector and Hessian
matrix of the objective funciion are very useful. Our particular objective func-
tion is not easy to differentiate, because it involves implicitly defined functions.
In the past, the exact treatment has been considered to be not manageable be-
cause of the complicated objective function and the difficult side conditions. In
an approximate approach, derivatives mostly are replaced by quonents of differ-
ences. [ his common practice inevitably leads to the well-known predicament: a
large discretization-stepsize yields inaccurate values and a small step size makes the
computational process instable. But within the last decade it has become apparent
that derivatives can be computed efficiently by Automatic Differentiation methods.

These ideas have been overseen or ignored for a long time. the breakthrough in
Automatic Differentiation came with the work of Rall (1980, 1981, 1984, 1987}, see
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also Fischer (1987, 1988, 1989). The state of the art can be found in Griewank and
Corliss (1991). Automatic Differentiation in statistics is e.g. used by Thacker (1990)
and Sawyer (1984). Gradient vector and Hessian matrix of a fairly general function
of several variables can be obtained “automatically” in an easy and straightiorward
manner. No discretization is involved, no manipulation of symbols is necessary
Furthermore, Automatic Differentiation makes it possible to treat functions which
were out of reach previously, for instance: compute gradient vector and Hessian
matrix of the determinant of a matrix, the entries of which are functions of several
variables. This enables us to present a method for the exact ML-estimation. Sc,
the intention of this paper is to demonstrate that Automatic Differentiation is a
powerful device for Time Series problems.

In section 2 we introduce linear regression models with stationary ARMA(p.q)
residuals and derive their likelihood functions, which have to be minimized. The
next section provides appropriate optimization methods, a Newton method, a
Broyden-Fletcher-Goldfarb-Shanno method, and theorems concerning the rate of
convergence. Automatic Differentiation is described in section 4, where first we
present the general idea and then focus on our particular Time Series problem.

2. THE MODEL AND THE LIKELIHOOD FUNCTION

Consider the linear model

y= X3+ u. (2.1)
X € RT" is a given design matrix with rank(X)=r<T,yeRT isa given vector,
and the components uy,... ,up of u are ARMA(p.q), 1.e.
P 9
th;u,_;:Zsz,_j fort=p+1,...,T, (2.2)
=0 )=0
where ®o,... ,®, and Oy,... ,0, are real numbers, &y = Oy = 1, and where the

£, are unobservable independent normal random variables with
E(s,) =0, E(e2)=0% El(e,,e.)=0 forr,x€Z v#x. (2.3)

For r =... ,=1,0,1,..., (2.2) and (2.3) define a stochastic process that is station-
ary with u, independent of €;41,5¢42,..., if and only if the ®,'s are such that the
principal minors h;(®) of the matrix Q(F) with the components

min(ig)

Gij = Z (Ri-a Qi = Ppp-i®psss;) fori,j=0,... .p-1 (2.1)
k=0

are positive, see Pagano (1973). Hence, we can state the stationarity condition as
p nonlinear inequalities in @ := (®,,... . ®,)" by

hi(®)>0  for i=1.....p (2.5)
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Let © := (8,,...,0,)". Under stationarity of (2.2) we obtain the following
likelihood function L(8,®, 0. )

L(3,9,0,¢)=(2n)"T7 |20 (®,0, 0)|" "/ x
X exp{~Hy— X8)Er(9,0,0)"(y - X3)}
= (27)" T/ (a*)"T/*|Vip(®, ©)|"/? x
x exp{—5ox(y — X8)'Vp(®,0)" ' (y — X3)},

where £1(9,0,0) = E(us') = ¢?V;(®,0) is given by a formula and positive
definite.

The ML-estimator (3, ®, ©, &) for (4, ®, ©, ) can be computed by solving the
following minimization problem:

- XB)'Vr(®,0) " (y - X3) } (2.6)

min {T- In(e?) +In |Vr(®,0)] + o

8. 0.0

subject to A;(®) >0fori=1,... ,pand ¢ >0,

The known matrix Vp(®, @) comprises only T different entries vo(®,09), ... ,
vp_,(®,©) which are assumed to be twice continuously differentiable functions.

The optimization problem (2.6) is of the following form:
min{ f{<) | h(z) > 0}, f:R* =R, feC? h:R" — RFH,

where z denotes the four gathered variables 3, ®, ©, ¢. Therefore n = r + p +
g + 1. The strict inequality constraints are such that they allow the application
of minimization procedures for unconstrained problems with a special step size
control.

3. OPTIMIZATION

In this chapter we describe two algorithms for solving the optimization problem
(2.6). Most of the iterative algorithms for minimizing a given function F over a set
2 := {z € R* | h(z) > 0} have the following structure:

Step 0) chose zg €0, et ) =10
Step 1) if F/(2:) = 0 hoy stop
Step .} ciose a search cirection s;
Step 3) deiermine a step size i; such that with z;4, = 2; — 7;s;:
a) 2541 €0
b) Fz;41) < Flz;)
Step 4) 7 = j + 1, goto Step .
As se=n in the general scheme we have Lo speciiy the search direction and the
step tize.
From row on, we denote by g the gradient and by & the Hessian matreix of the
objective tunction F, and we set g; = ¢z, ) = F'(z;) and l; = H{z;) = F"(z;).
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First we propose a modified Newton algorithm. The search direction s; is the

solution of
HJIJ' ¥ (3.1}

The step size r; will be chosen as follows:

Let § € (0,1/2). Determine the smallest » € {0,1,2,...} such that with
r; :=(1/2)" and with z;4, = z; — 1;8;

(a) h(zj+1)>0; (b)) F(zj41) < F(z;) = b7;9;s;. (3.2)

Condition (3.2)a ensures the positivity of the matrix Q(®). Hence, using the modi-
fied step size control (3.2) only an unconstrained minimization problem is to handle.

If (3.1) has no solution or more than one, there are a lot of possibilities to leave
this critical situation with success. To describe these possibilities would exceed a
reasonable size of this paper, details may be found in Dennis and Schnabel (1983),
Fletcher (1983), Gill, Murray and Wright (1981).

The second proposed algorithm will not use the Hessian matrix of the objective
function. The method approximates in a certain sense the inverse Hessian matrix
of the objective function. This approximation is denoted by M;. We startat ; =0
with the identity matrix as M; and modify M; in a special way to get M;,.

The search direction s; will be computed by
s; = M;g;,
and we shall get M;,, with the following update:
d;p; + %deip_pg _ pid; My + M;d;p]
@p) PP (@)

Mjp =M+ (3.3)

In this formula d; denotes ||rjs_,-[]*1(gj — gj+1) and p; denotes |[3j||'l.sj. - |l
denotes the Euclidean norm. This update is called the BFGS-update (Broyden-
Fletcher-Goldfarb-Shanno).

The step size ; will be computed in a way slightly different from the above
one:

Let 0 < 1 < v2 £ 1/2. Determine the smallest » € {0,1,2,...} such that
with 7; ;= (1/2}" and with z;4, := z; — 7;39;.

(H) h(zj-l-l) >0

(b) F(zj41) € F(z;) = nrig;s; (3.4)

(€) 954185 < 120)s;.

Formula (3.4)a again ensures the positivity of Q(®).

To motivate this proposal we give two theorems. First, however, some defini-
tions.
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DEFINITION. A function F : R® — R will be called uniformly convez, if F is twice

continuously differentiable and there exist o, € R with 0 < a < ¢ so that for all
.Y € R“ it hﬂldﬂ

allzll’ < ' H(y)z < Cll=l*.

Let the sequence {z;} be convergent to %, then {z,} converges

superlinearly, if lim l2; +1 **I” =0,
)=—o0 "zj-I”
quadratically, if lim Iz 41 — ZI < o0

Y
RN “31-'="

THEOREM 1. Let F be uniformly convez, {z;} be generated with the Newton search
direction and step size control (3.2) and zo € Q be an arbitrary point, then

a) the algorithm s practicable
b) {z;} converges superlinearly to the unique global minimizer z of F

c) if there exists L € R wnth ||H(z) — H(y)llps < Lllz = y|| for all z,y € R™, then
{z;} converges quadratically.

Here

A
lall, = sup 1221 4 e pen

reR~ “:“ ‘

ProoF. Ritter (1982).

The motivation for Theorem | is that if the Hessian matrix of a convex objec-
tive function at an isolated minimum Z is positive definite, theré exists a neighbor-
hood of Z, where the objective function is uniformly convex.

THEOREM 2. Let zo € N and {z;} be generated by the BFGS-update and the step
size control (3.4). .

a) If F 1s continuously differentiable and convez, furthermore twice continuously

differentiable on Sy := {z | F(z) < F(zy)}, and Sy 1s bounded, then

lg;l]l — 0 as j — oo and every cluster point of {z;} wll be a global
minimazer.

b) If additionally to a) {z;} converges to £ wrth g(Z) = 0 and F 1s twice con-
{inuously differentiable on an open conver neighborhood U of z and H(z) 1s
positive definite. furthermore there enists L € R with

“H(J—'}-H(F]”M < Ljjz - yl| forallz,y e U,

then {z;} uril converge superlinearly.

Proofr. Ritter (1082).
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Finally we remark that, il in problem (2.6) the iteration sequence {z;} con-
verges to the border of the feasible region, then the model established is not a
stationary process. Hence, a new model has to be searched for the given data.

A great difficulty in applying the above algorithms is the provision of the first
and second derivative of the objective function f. This difficulty will be avoided
by using Automatic Differentiation. This technique delivers gradient and Hessian
matrix of a function at arbitrary points exact up to rounding errors. No explicit
formula for the gradient and the Hessian matrix will be needed. This method shall

be lined out in the following.

4, AUTOMATIC DIFFERENTIATION

: In this section we first describe the basic ideas of Automatic Differentiation,

and then we focus on our specific objective function. For the seek of simplification
we use the forward mode, which additicnally supports a parallel implementation in
a natural way in opposite to the reverse mode, which would be applicable for our
special problem, too. Let f: D C R®™ — R be a twice differentiable function, let
fe(z) and fg(z) denote the gradient resp. Hessian matrix of f at z € D. Recall
that

: T
felz) = 0/(z) - A8 is a vector in R™,
| Oz, 0z,
[ 8% f(z) &’ f(z) T
82,8z, = 8z,0z,
Ja(z) = : ; 1S a symmetric matrix in & .
8*f(z) 9 f(z)
. 8z,02y = 0z,0z, -

Define a black box FGH, which accepts the function f and the point z, and which
produces the triple f(z), fa(z), fu(z).

f(z), fe(z), fu(z) +——F7 FGH —l:

£

Our aim is to implement the black box FGII for fairly general f and arbitrary
zeD.

To begin with, we state trivial cases.

Let r : D — R be a constant function, that means r(z) = cforall z € D.
Then

rc(z) = zero-vector, rg(z) = zero-matrix.
Let r : D — R be a projection, that means r(z) = z; = i-th component of z. Then
r¢(2) = i-th unit-vector, ru(z) = zero-matrix.

Hence, the black box FGH can be implemented for constant functions and projec-
tions. Though this is trivial, we need it as basis for the sequel.
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Now we consider two familiar ways to build new functions from old ones: the
rational composition and the library composition. Assume that the lunctions

a:DCR*"—=R and b:DCR" =R

are twice differentiable. Assume further that r is one of the functions a+b, a—b, a-b,
a/b with the provision b(z) # 0 in the case r = a/b. Then r is twice differentiable
too. Let us mark the gradient and the Hessian matrix of a function by the subscript
G resp. H. Table 1 shows formulas for rg and rg.

Table 1. Gradient and Hessian matrix of rational composition:

function gradient Hessian matrix
r=a+b ré = ag + bg ry =ag + by
r=a-b | rg=ag—bg ry =ag — by
r=a-b rg=b-ag+a-bg rg=b-ﬂg+ug~b:;+u-bg+ba-a§3
r=a/t | ro=(ag—r-ba)/b | ru=(an —rg bg—r bu—bc r5)/b

We strictly distinguish between functions and function values. So it should
be clear that the table above shows equations of functions. Applying any of the
functions r,rg,rg to some z € D, we get an equation of function values. For
instance in case of multiplication (r = a - b), we obtain

rg(z) = b(z) - ag(z) + ag(z) - bg(z) + a(z) - by (z) + bs(z) - ag(z).
From the formulas in Table 1 we conclude:

For given z € D, the triple r(z), rg(z), ra(z) can be computed from the triples
a(z), ag(z), an(z) and b(z), bg(z), bu(z).
This observation allows to define a black box RAT, which accepts the type

of w € {+,—,,/} and the triples a(z), ag(z), ag(z) and b(z), bg(z), bx(z), and
which produces the triple r(z), rg(z), rg(z).

W

I‘ITILfG(I).fH(I) -— RAT n(z]'l ﬂG(I).ﬂH(I]
b(;r)i bG(I]I bﬂlxl

Note that the triple r(z), rg(z), ry(z) is not a triple of formulas, nor is it a triple
of functions, it rather is an element of B x B™ x R"™. It is obvious that the black
box RAT can easily be implemented as a procedure in PASCAL, as a subroutine
in FORTRAN. or as a function in a more powerful programming language. As an
alternative the black box RAT can be replaced by four black boxes, each of these
designed for one particular type of w.

A first very short example shall show the use of FGII and RAT. Consider the

function %1 - T3

f:DCR2 =R with f(z)=

I3
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Define the functions fy, fa, f3, fa. fs : D — R by
hHhiz) =z

falz) =z
falz) = z3
fa(z) = filz) - f2(z)
fs(z) = fa(z)/ fs(=z).

Of course, fs = f. For given z € D we compute

F, — FGH(f;,z)
Fy, — FGH(f2,2)
F3; — FGH(fs,z)
Fy — RAT(-,F, Fy)
Fs — RAT(/, Fy, F3)

So we obtain the triple F5 = (fs(z), fsa(z), fsu(z)) = (f(2), fa(z), fa(z)). This
example indicates that the black box FGH can be implemented for any explicitly

given rational function.

Next we turn to library composition. Let A be a collection of real functions
of one real variable. For brevity, these functions are called library functions. One
may choose sin, In, ... and the like as library functions.

Assume now that r = Aoa, where A : £ — R is a library function with first
derivative \' and second derivative A" and a : D — R is twice differentiable. Then
r is twice differentiable, too. Table 2 shows formulas for r5 and rg.

Table 2. Gradient and Hessian matrix of library composition.

r(z) = Ala(z))
ra(z) = N(a(2)) - ag(z)
rg(z) = N(a(z)) - ag(z) - ag(z) + A'(a(z)) - ag(z)

We assume that we are able to evaluate A, X', A" at any given point in E. This is no
problem as long as A is one of the commonly used library functions sin, In, sqrt, ...
and the like. The mechanism to get the triple r(z), rg(z), rg(z) from the triple
a(z), ag(z), ay(z) does not depend on the particular z, it does not even depend
on the values a(z), ag(z), ag(z), it merely is a matter of the library function A

From the formulas in Table 2 we conclude:

For qwven z € D, the triple r(z), rg(z), rug(z) can be computed from the triple
a(z), ag(z), ag(z) using A\, A", \".

This observation allows to define a black box LIB, which accepts the name of
A € {sin.In.sqrt,...} and the triple a(z), ag(z), ag(z), and which produces the
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triple »(2), rg(z), rg(2).

A
riz), rgl(z), rg(2) ~——| LIB [
a(z),aglz),aylz)

It is obvious that the black box LIB can easily be implemented as procedure in
PASCAL, as subroutine in FORTRAN, or as function in a more powerful program-
ming language. As an alternative the black box LIB can be replaced by a collection
of black boxes, each of these designed for one particular library function.

A second very short example shall show the use of FGH, RAT and LIB. Con-
sider the function

f:DCR* =R with f(z)=sin(z, + In(z1)).
Define the functions f;, fa, fa, fa, fs : D — R by

hiz)=z1 |

f2(z) = z,

fa(z) = In(f2(z))

fa(z) = fi(z) + fa(z)

fs(z) = sin(f4(z)).
Of course, fs = f. For given z € D we compute

F, — FGH(f,, z)

F, — FGH(f2,2)

F3 — LIB(In, f3)

Fy — RAT(+, [y, F3)

Fs —— LIB(sin, Fy).
So we obtain the triple Fy = (f5(2), fsc(2), four () = (/(2), fa(z), fu(2)).

Having prepared some tools, we are ready to concentrate on computing gradi-
ent and Hessian matrix of an explicitly given fairly general function

f:DCR*—=R

The phrase “explicitly given” shall mean that for f(z) we_have a formula which
is composed of the components of z, some real constants, the rational operations

4+, —,-,/, some library functions, and parentheses at proper places. Hence, we can
set up a characterizing sequence fy, fa,... . f, of functions f; : D C R" — R such
that

() focs=1,... ,®

fi(z) = z; = i-th component of z,
(2) fori=n+1,... n+dwithsomede€ {0,1,2,...}
[i(x) = ¢; = real constant,
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(3) fori=n+d+1,...,8
filz) = fa@)(z)wi faiy(2)
with some w; € {+,—,-,/} and some a(i), 3(5) € {1,2,...,i ~ 1} or
filz) = Al faii)(2))

with some A € A and some afi) € {1,2,... .1 =1},
(4) fi(z) = f(2).

A priori, the characterizing sequence f,, f2,..., f, has nothing to do with
differentiation, it merely describes how to compute f(z) algorithmically. But in
view of RAT and LIB it is a convenient means for computing fg(z) and fg(z).

We assume that all library functions used in the sequence f, fs,... . f,
are twice differentiable. This guarantees that the given function [ is twice
differentiable. To the sequence f,, fa,...,f, there correspond the sequences
hH fag,--. . fac and fig, fam.... , furn. Now we define

F; := (fi(z), fic(=z), fir(=)) for i=1,...,s

and consider the sequence F|, F;,... , F, of triples. Fori=1,... ,n+d the triple
F; is obvious. And fori =n+d+1,...,s in this order we know the mechanism

how to compute the triple F;
— from two triples already available in case f; is a rational composition,

— from one triple already available together with A;, A}, A in case f; is a library
composition.

For given z € D the gradient fg(r) and the Hessian matrix fg(z) can be
computed by the following Algorithm 1.

Algorithm 1. Computation of f(z), fa(z), fu(z)

Step 1: Fori=1,...,n
fi(z) ~— z; = i-th component of z, given
fic(z) — i-th unit vector in R"
fig(z) —— zero-matrix in R™®

F; — (fi(2), fic(z), fiu(=)).

Step 2: Fori=n+1,... n+d
fi(z) —— ¢; = real constant, predefined
ficlz) ~— zero-vector in B"

fin(z) ~—— zero-matrix in R™"

F; — (fi(z), fic(z), fiu(z)).

Step 3: Fori=n+d+1,....s
F; — RAT(wi, Foiiy, Fay)
or

F; — LIB(A;, Fa(iy)-
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This algorithm produces the triple F, and we know that

F, . (fl{:]rflﬂ(:)lflﬂ(:” - (f(:): fﬂ(‘]-!h’(:))'

If we use the black box FGH for the projections in Step 1 and for the constant
functions in Step 2, we get a more concise form for Algorithm 1:

Algorithm 1. Computation of f(z), falz), fu(z) — concise form

Step 1: Fori=1,... .n
F; ~— FGH(f;, z).

Step 2: Fori=n+1,... n+4+d
F; — FGH(f;, z).

Step 3: Fori=n+d+1,....,s
F; — RAT(wi, Faiy, Faiy)
or

F; «— LIB(X;, Fagi))-

A comparison of the characterizing sequence f,, f3,..., f, and Algorithm 1
shows that a program for computing f(z) can easily be transformed into a program
for computing the triple f(z), fg(z), fg(z). Loosely speaking we may say: If
we have an algorithmic description for computing f(z), and if we run through
this description with triples instead of reals, with RAT(=, u, v) instead of u = v,
and with LIB(A, ) instead of A(u), we obtain f(z), fg(z), fu(z) instead of f(z).
Furthermore, the close relation between the characterizing sequence Bvdtin-- 1 Fs
and the Algorithm 1 demonstrates that the black box FGH can be implemented
for a fairly broad class of explicitly given functions.

Let us focus on our particular objective function f : D € R®™ — R with

(y — XB)'Vr(®,0)" ' (y — XB)

ol

f(3,9,0,0) =T - In(¢?) + In|Vy(®,0)| +

. (4.1)

The enterprise to compute gradient and Hessian matrix of f seems to be hope-
less, for more than one reason. Firstly, how should we deal with the determinant
\Vr(®,0)|? Secondly, we know the matrix V7 (®,©), but what about its inverse?
Anyway, there is no characterizing sequence for f at hand. Not yet. Of course, the
determinant of a matrix M € RT7 is a rational function of its entries,

M| = ZiMu. Mag, ... Mrpy

where the sum has to be taken over all T! permutations (ky, ks,..., ky) of
(1,2,...,T), and the entries of M~' are rational functions of the entries of M,
by Cramer’s rule. But this approach together with characterizing sequences for the
entries of Vo (®, ©), would yield an astronomically long characterizing sequence for
f. Fortunately, a characterizing sequence for a function is not unique. and we shall

present a manageable one for f.
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In order to get a more uniform notation we set n=r + p+ ¢ + | and

T, T F1r+| | -1r+p+l :
_H - -],h W7 G

Zn Ty L Ertp ] [ Er4p+9 .

and we define for z € D

m(z) := Vp(®,0) = matrix in R77, (4.3)
d(z) = |Vp(®,O)| = real number, (4.4)
e(z) :=y—Xf# = vectorin RT, (4.5)
e(z) =¢° = real number. (4.6)

Then our objective function reads

e(z)m(z) e(z)

e(z)

We recall that the matrix m(z) is positive definite. Hence, we may take ad-
vantage of the Cholesky-factorization. We are allowed to write m(z) in the form

f(z)=T -lnc(z) + Ind(z) + (4.7)

m(z) = I(z)-I(z)* (4.8)
where I(z) is a lower triangular matrix. This implies
m(z)™' = ((z)"") U(z)"". (4.9)
Using the abbreviation
s(z) := l(z)""e(z) (4.10)

the formula (4.7) for f(z) can be rewritten as

s(z)'s(z)

c(z)

f(z)=T:lne(z)+ Ind(z) + (4.11)

By the way, the previous problem with the determinant has vanished, because
d(z) = |miz)| = |l(z)|- |I(z)f], and that yields

d(z) = (h(2)- la(z) - ... lrr(2)* (4.12)

It remains to tell how l(z) and s(z) can lie obtained algorithmically. The
significant entries of the mairix I(z) are

E-1
for k=1,... ., T, :*&(Z)=ﬁkk(7]— zlg,f__.r) lea(z)

‘:" (4.13)
for yesk4,.4., T, lig(z) = (mﬂ(:) - 2l (=) f;,(ri),’l.;ln.

r=l
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Of course, the nlanithmic description (4.13) defines a sequence of functions, where
each one is a rational composition or a library composition. This sequence starts
with ly; and ends with lpp, we denote it by

hli- . u .!‘]"T. [414}
The components of s(z) are
. =2
forj=1,..., T, s(z)= (cj(ﬂ - 2 liu(2) - a-(z))ﬂj;[ﬂ' (4.15)
r=l]

Of course, the algorithmic description (4.15) defines a sequence of functions, where
each one is a rational composition. This sequence starts with s; and ends with sy,
we denote it by

81,... 8. (4.16)

Now we work bottom-up and glue parts together. We set f;(z) = z; for
t=1,...,nand f,4i(z) = T. The entries m;; of m are known explicitly. We
combine the characterizing sequences of all the m;; in one sequence

fll"’ifﬂ-!"'lmlll"'lmTT‘ {4'1?)

Then we continue with (4.14) and (4.15) and obtain

fl:--* 1fn1--' RLLD S BT lmTTlilli"‘ HITTl‘slI"' y ST . (4-18)

From the sequence (4.18) we proceed straightforward to d according to (4.12) and to
f according to (4.11). The necessary rational compositions and library compositions
are obvious, we denote these by r,... ,r,. The resulting sequence

fl:--- !fﬂf"" My, -mTT!"llt-” ilﬂ!alt"' 3T Ty Ty [419}

is a characterizing sequence for our objective function f.

Recall that the sequence (4.19) merely is an algorithmic description for com-
puting f(z). But if we choose a point z and use the sequence (4.19) together with
Algorithm 1, we obtain the tniple f(z), fg(z), fu(z).

5. CONCLUSION

Automatic Differentiation is a powerful means for computing derivatives of
fairly zeneral functions, including all rational functions. Even if some function f
mvolves implicitly defined quantities. such as the determinant or the inverse of a
matrix. the entries of which are functions of several variables, gradient and Hessian
matrix of f at given points can be computed effectively.

We discussed the exact maximum-likelihood estimation for linear regression
models with stationary ARMA(p.q) residuals. The ML-estimator is the solution
of a nonlinear optimization problem, therefore we proposed to use well-established
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optimization methods together with Automatic Differentiation. First numerical re-
sults are promising. We are planning to do more numerical experiments, especially
in & parallel computing environment.

In a forthcoming paper we shall present a detailed implementation on &
transputer-based machine and numerical results as well.
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